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Abstract: 

In this paper, we present a series approximate solution method for a boundary layer problem in unbounded 

domain by employing a reliable combination of modified iterative decomposition method (MIDM) and 

diagonal padé approximants. Boundary condition at infinity, poses a major problem generally to most 

numerical solution techniques. Without using the pade approximation, the semi analytic solution obtained 

failed to satisfy the boundary conditions at infinity. The proposed scheme finds the solution without 

discretization or restrictive assumptions, free from round off errors and so reduces computational burden 

to a great extent. Comparison is made between the obtained results and other semi-analytical methods 

mentioned in literature. The MIDM-Pade provides a simple, lesser iteration and effective technique for the 

solution of boundary layer problem in unbounded domain devoid of use of special polynomial. The results 

obtained attest to these assertions by being in excellent agreement with series solutions of other methods 

in literature. 
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Introduction 

The decomposition method began in 1980 as postulated 

by George Adomian (1994) and has been applied to a wide 

class of functional differential, integral and integro-

differential equations. Various modifications of Adomian 

decomposition has been carried out to further enhance its 

suitability, efficiency and provision of accurate and easily 

computable series solutions for many classes of linear and 

nonlinear differential equations (Adomian 1994, Khan 

and Faraz 2011). Noor and Moyud-din (2009) presented a 

modified variational iteration method for solving 

boundary layer problem in unbounded domain that is 

based on coupled standard variational iteration method 

and He’s polynomials. Other forms of Adomian’s 

methods were proposed by Dafturdar-Gejji and Jafari 

(2006), Taiwo et al. (2009, 2018), Osilagun and Taiwo 

(2021) have been effectively used to solve a large class of 

linear and nonlinear equations. The Laplace transform 

decomposition algorithm is another approach based on 

Adomian’s method that was introduced by Khuri (2001) 

and Khan (2009). It involves the use of Laplace transform 

to replace differential operators with simple algebraic 

operation on the transform. This method approximates the 

exact solution with a high degree of accuracy using only a 

few terms. Recently, several techniques including 

Adomian decomposition method (ADM), variational 

iteration method (VIM), finite difference method (FDM), 

differential transform method (DTM), and polynomial 

spline and homotopy perturbation methods (HPM) have 

been developed for solving boundary layer problems. 

Most of these methods have their inbuilt deficiencies such 

as the calculation of special Adomian polynomials, 

identification of Lagrange multiplier, divergent results, 

huge computational burden, inability of these semi-

analytic methods to satisfy boundary conditions at 

infinity, Wazwaz (2006), Xu (2007), Noor and Mohyud-

din (2008, 2009), Hussein and Khan (2010), Rashidi 

(2010.), Khan and Faraz (2011), Peker et al. (2011). The 

modified iterative decomposition method is combined 

with the diagonal padé approximants to obtain the 

approximate solution of a boundary layer problem in 

unbounded domain which arises in fluid mechanics that is 

devoid of use of special polynomials filled with 

complexity. In the earlier works of Wazwaz (1997) and 

Kuiken (1981), the behaviours of the infinite series 

solution was of great concern. Boyd (1997) and Baker 

(1975) have shown that power series in isolation may not 

be useful to boundary value problems.  This is as a result 

of the possibility that the radius of convergence may not 

be sufficiently large to contain the boundaries of the 

domain. This justifies the combination of the modified 

iterative decomposition method or any series solution with 

the diagonal padé approximants as an effective tool to 

handle boundary value problem in infinite or semi-definite 

domains. 

Analysis of the Methodology 

Description of modified iterative decomposition Method 

(MIDM)-PADE’ approximants. 

In order to elucidate succinctness of the proposed 

modified iterative method’s solution technique, we 

considered the general form of a second order, nonlinear, 

non homogeneous differential equation with initial 

conditions as given below
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Equation (1) can be put in operator form as
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dx

d
L because L  is invertible,

1L  exists and it is a two-fold definite integral defined by 
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Applying 
1L to both sides of equation (3) and using the initial conditions, yield
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The nonlinear operator )(uN is decomposed as follow  
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On further simplification, we obtain the recursive relation 
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where )( xf represent the term arising from the source term and the prescribed initial conditions. The proposed technique is 

based on the assumption that the zeroth component )(xf can be divided into two equal parts, such that 

)()()( 10 xfxfxf                       (8) 

The technique assigns only the part of )(0 xf  to the zeroth component of 0u  while the remaining part of )(1 xf  is 

combined only with other terms in 1u  of equation (7). Moreover, the current trend in numerical solutions of differential 

equations is towards efficiency, simple algorithm devoid of complexity and ensuring high level of accuracy. Thus, a 

modified recursive algorithm is obtained below by  
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The success of recursive scheme in (9) depends on the proper selection of )(0 xf  as the initial solution to avoid noise 

oscillation during the iteration process. Although, the choice of )(0 xf is based on trial criteria; yet the proposed algorithm 

reduces computational burden when compared to the iterative method. It may also give exact solution with two or fewer 
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iterations only without necessarily using special polynomials such as Adomian polynomials, Bell’s polynomials and He’s 

polynomials. 

Padé Approximants  

Padé approximant is the best approximant of a function with a rational function of a certain order. By this technique, the 

approximant power series agrees with the truncated series it is approximating and further extends the range of validity of the 

initial polynomial as an added advantage. According to Baker (1975), Pade’ approximant is the ratio of two polynomials 

constructed from the coefficients of the Taylor series expansion of a function )(xf . The [M|K] Pade’ approximants to a 

function )(xf  is defined by  
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in the neighborhood of the origin such that there is no common factor between the numerator and the denominator, where 
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We conclude this section by the construction of a diagonal Pade’ approximants [M/M]  

Suppose, that  )(xf  ) has a Taylor Series given by        
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Set, 

[𝑐0 + (𝑐1 + 𝑏1𝑐0)𝑥 + (𝑐2 + 𝑏1𝑐1 +  𝑏2𝑐0)𝑥2 + (𝑐3 + 𝑏1𝑐2 + 𝑏2𝑐1 + 𝑏3𝑐0)𝑥3 + ⋯ − [𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ ] = ∑ 𝑑𝑖𝑥𝑖𝑚
𝑖=0

                                          (13) 

Putting 𝑑𝑖 = 0, 𝑖 = 0, 1, 2, 3, … and equating the power of x leads to a system of linear equations, that is solved by Gaussian 

elimination method to obtain the unknown coefficients   

𝑎0, 𝑎1, … , 𝑎𝑚, 𝑏1, 𝑏2, … , 𝑏𝑚 

Which results to the required [M|M] approximant. 

Finally, diagonal pade approximants of different orders such as [2|2], [4|4] or [6|6], can be obtained using the symbolic 

calculus software, Maple. 

Application 

In this section, we apply the modified iterative decomposition method combined with the diagonal padé approximants to a 

third order boundary layer problem and the results obtained are presented in tabular form for easy comparison with some of 

the different methods mentioned in literature. All symbolic computation is implemented using Maple solver. 

Consider )14(0,0))((2)()()1()( 2 nxfnxfxfnxf   

With boundary conditions 

     
 )150)(,1)0(,0)0(  fff

 

Where )16(0)0(  f  

By applying the recursive algorithm (9) and using the initial conditions, yield the following 
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The series solution after three iterations is given by  3210)( ffffxf   
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furthermore, we obtained the diagonal Padé approximants of different order ]5|5[,]4|4[,]3|3[,]2|2[ and 

]6|6[  of the solution )(xf  for an insight to the solution behavior. 
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Results and Discussion 

Table 1: Comparison of the numerical values of 10)(  xforxf by using Padé approximation 

N Pade’ 

approximants 

MADM 

Wazwaz (2006) 

MVIM 

Noor & 

Mohyud-din (2009) 

MLDM 

Khan & Faraz 

(2011) 

Proposed 

method 

0.2 [2|2] 

[3|3] 

[4|4] 

[5|5] 

[6|6] 

-0.3872983347 

-0.3821533832 

-0.3819153845 

-0.3819148088 

-0.3819121854 

-0.3872983347 

-0.3821533832 

-0.3819153845 

-0.3819148088 

-0.3819121854 

-0.3872983347 

-0.3821533832 

-0.3819153845 

-0.3819148088 

-0.3819121854 

-0.3872983347 

-0.3821533832 

-0.3819153845 

-0.3819148088 

-0.3819121854 

0.3 [2|2] 

[3|3] 

[4|4] 

[5|5] 

[6|6] 

 

-0.5773502692 

-0.5615999244 

-0.5614066588 

-0.5614481405 

-0.5614491934 

0.5773502692 

-0.5615999244 

-0.5614066588 

-0.5614481405 

-0.5614491934 

0.5773502692 

-0.5615999244 

-0.5614066588 

-0.5614481405 

-0.5614491934 

0.5773502692 

-0.5615999244 

-0.5614066588 

-0.5614481405 

-0.5614491934 

0.4 [2|2] 

[3|3] 

[4|4] 

[5|5] 

[6|6] 

 

-0.6451506398 

-0.6391000575 

-0.6389732578 

-0.6389892681 

-0.6389734794 

-0.6451506398 

-0.6391000575 

-0.6389732578 

-0.6389892681 

-0.638973479 

-0.6451506398 

-0.6391000575 

-0.6389732578 

-0.6389892681 

-0.638973479 

-0.6451506398 

-0.6391000575 

-0.6389732578 

-0.6389892681 

-0.638973479 

0.6 [2|2] 

[3|3] 

[4|4] 

[5|5] 

[6|6] 

-0.8407961591 

-0.8393603021 

-0.8396060478 

-0.8395875381 

-0.8396056769 

-0.8407961591 

-0.8393603021 

-0.8396060478 

-0.8395875381 

-0.8396056769 

-0.8407961591 

-0.8393603021 

-0.8396060478 

-0.8395875381 

-0.8396056769 

-0.8407961591 

-0.8393603021 

-0.8396060478 

-0.8395875381 

-0.8396056769 

0.8 [2|2] 

[3|3] 

[4|4] 

[5|5] 

[6|6] 

-1.0079832070 

-1.0077969810 

-1.0076468280 

-1.0076468280 

-1.0077921000 

-1.0079832070 

-1.0077969810 

-1.0076468280 

-1.0076468280 

-1.0077921000 

-1.0079832070 

-1.0077969810 

-1.0076468280 

-1.0076468280 

-1.0077921000 

-1.0079832070 

-1.0077969810 

-1.0076468280 

-1.0076468280 

-1.0077921000 

 

The series solution accurate and further understanding of the solution behavior is enhanced by the diagonal Pade 

approximations exhibited in Table 2 using the series solution )(xf  obtained earlier in section three. 
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Table 2: Comparison of the numerical value of ),0(f  using diagonal Pade’ approximants 

 

Conclusion 

The modified iterative decomposition method combined 

with the diagonal Padé approximants for solving boundary 

layer problem in unbounded domain has been presented. 

The convergence of the technique is also exhibited as 

shown in Tables 1 and 2. An analytic approach was used 

to obtain numerical values of )(xf   for various values 

of n. The proposed method further attests to the fact that 

)(xf   decays algebraically for 10  n  and decays 

exponentially for 1n  as x tends to infinity as earlier 

claimed in Kuiken (1981), Wazwaz (2006), Xu (2007), 

Noor & Mohyudin (2009) and Khan & Faraz (2011). 

Results of the proposed method compares 

favourably/excellently with the existing solutions in the 

literature. Moreover, it uses the least iteration, is simple in 

principles and convenient for computer algorithms. The 

proposed technique does not require any form of 

linearization, perturbation, discretization or restrictive 

assumption and is free from round off error. 
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